Machine Learning(ML) 기술이 발전하면서 빠르게 기존 시스템과 통합이 이루어 지고 있다. LLM도 단순히 사람들이 ChatGPT와 같은 서비스를 사용하는 것을 넘어서서 Cloud를 통해서 여러 시스템과 통합이 이루어 지고 있다. 아래 그림데로 많은 ML 시스템에서 실제로 학습이나 예측에 사용되는 코드가 극히 일부에 불과하다는 것이 이미 알려져 있다[1]. 이러한 관점에서 기존의 여러 기술들이 ML 기술들과 통합되어야 한다. 이러한 관점에서 숨겨진 기술 부채(Hidden Technical Debt in Machine Learning)가 많을 수 있다.
특히, 기존의 성능과 관련된 항목에서도 이러한 부분을 살펴 볼 수 있다. 여기서는 성능 관점의 지연 시간(Latency)와 규모확장성(Scalability)에 대해서 잠시 살펴 보자.
기존 기술의 경우에도 Cloud를 기반으로 하게 되면 최종 사용자의 위치에 따라서 실재 연산을 처리하는 서버의 위치(Region)은 중요한 부분 중에 하나이다. 간단히 말하자면, 한국에 있는 사용자가 미국에 있는 서버에 접속해야 하는 경우라면 결국 요청을 미국 서버에 보내고 처리한 결과를 다시 한국에 있는 사용자에게 보내려면 시간이 걸릴 수 밖에 없다. 그렇다면, LLM의 Foundation Model을 운영하는 Cloud의 Region을 최종 사용자에 맞게 최적화 할 필요가 있다.
규모 확정성(Scalability)의 경우도 사용자가 많아 지면 하나의 LLM 인스턴스로 처리하는 것은 문제가 될 수 있을 것이다. 이것도 결국에는 Load balancing 이슈에 해당한다고 할수 있다. 결국 이러한 전통적인 문제는 기존과 같이 요청을 잘 분배해서 처리하는 구조가 필요하다[2].
참고 문헌
[1] D. Sculley et al., "Hidden Technical Debt in Machine Learning Systems", https://papers.neurips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
[2] https://aws.amazon.com/ko/blogs/tech/multi-rag-and-multi-region-llm-for-chatbot/
'Machine Learning' 카테고리의 다른 글
LLM으로 문제 해결하기 (0) | 2024.08.07 |
---|---|
LLM의 RAG을 위한 개념: 임베딩 모델, 벡터 데이터베이스 (0) | 2024.07.31 |